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Abstract. We study the coherent quantum tunneling of magnetization, for example, in a biaxial molecular
magnet with dissipation of the environment which results in the suppression of the tunneling and therefore
the decoherence of superposition of macroscopic quantum states in terms of the general spin-boson model.
The degree of entanglement between the magnet and the environment is evaluated explicitly with the help
of reduced density matrix. We show an interesting relation that the degree of entanglement approaches
maximum value when the coherent tunneling is suppressed completely.

PACS. 75.45.+j Macroscopic quantum phenomena in magnetic systems – 75.80.+q Magnetomechanical
and magnetoelectric effects, magnetostriction

Quantum tunneling of the magnetization in a single-
domain magnetic particle has attracted a great deal of the-
oretical and experimental interest because it may provide
a signature of quantum mechanical behavior in macro-
scopic systems [1]. In particular, the coherent quantum
tunneling between two degenerate orientations of the mag-
netization, which is called macroscopic quantum coher-
ence [2], has stimulated considerable research activities in
this field [3] because it may lead to the potential appli-
cation in data processing [4]. In recent years, a series of
experiments [5] on the crystals of magnetic molecules (for
instance, Mn12 [6] and Fe8 [7]) indicate that the molecu-
lar magnet is an ideal large spin system for investigating
the coherent quantum tunneling of the magnetization. It
is also demonstrated that the molecular magnet may be
a candidate for realization of quantum computing [4,8].
Coherent quantum tunneling is susceptible to dissipative
environment [2,9] and therefor a main obstacle for re-
alizing experimentally quantum computing in magnetic
grain is the unavoidable coupling of the qubit to the de-
gree of freedom of external environment and the deco-
herence caused by coupling. Within the Caldeira-Leggett
method treating the environment as a set of harmonic os-
cillators [10,11], the influence of the environment on the
dynamics of two-level system is completely determined by
a certain combination of oscillator parameter and cou-
pling strength known as the spectral density. Later the
method was extended to deal with the macroscopic quan-
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tum tunneling of magnetization with dissipation [12–14].
Reference [15] reported the first accurate numerical so-
lution of a dissipative quantum mechanical model which
exhibits steps in hysteresis loop and corresponding peaks
in the relaxation rates. Coherent tunneling of magnetiza-
tion has advantage in generating the coherent superposi-
tion of two macroscopically distinguishable states (i.e. the
Schrödinger cat states) [4,16] required for quantum com-
puting, however, is of disadvantage in information stor-
age, where macroscopic quantum coherence would lead to
information loss. It is, therefore, of importance to under-
stand and furthermore to control the effect of the environ-
ment on the coherent tunneling. There is already a body of
work concerning the various mechanisms of magnetization
relaxation in the molecular magnets [17]; little work, how-
ever, is done on the quantitative study in the effect of en-
vironment on the coherent tunneling of magnetization, for
example, in the decoherence and the entanglement. In this
paper we shall study the coherent tunneling of the magne-
tization in a magnetic grain with dissipation resulted from
a phonon-bath and show the suppression of the tunnel
splitting by coupling to phonons by using the variational
method which is a simpler way than most of preceding
works. Our approach is based on the general spin-boson
model in which the large spin system is approximated as a
two-level system at low temperature. It is shown that tun-
nel splitting is suppressed by the dissipative environment
which leads to decoherence of the Schrödinger cat states.
Using the two trial gruond states, required by the vari-
ational method, which are two entangled states, we also
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investigate the entanglement between the giant spin and
the environment and explore the intrinsic relation between
the entanglement and the decoherence.

A biaxial anisotropy magnetic grain with XOY
easy plane and the easy Y -axis can be described by
Hamiltonian

H0 = K1S
2
z +K2S

2
x (1)

where K1 and K2 with K1 > K2 are longitudinal and
transverse anisotropy constants, respectively. |ψ±〉 denote
the two macroscopically distinguishable quantum states,
corresponding to two equilibrium orientations of the mag-
netization vector along positive and negative Y -axis, re-
spectively. The quantum tunneling leads to the coher-
ence between the degenerate state |ψ+〉 and |ψ−〉. At low
temperature the tunneling rate between the degenerate
state |ψ+〉 and |ψ−〉 is rather small and the tunnel split-
ting is much smaller than the level spacing. Thus the giant
spin with dissipation may be approximated as a two-level
system coupling to a phonon-bath and can be described
by the effective Hamiltonian [11]

H = −Γ0

2
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1
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)
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where xk, pk, mk and ωk are, respectively, the coordi-
nate, momentum, mass, and frequency of the kth har-
monic oscillator in the heat bath, and Ck is the coupling
strength between the two-level system and the kth oscil-
lator. Γ0 denotes the bare tunnel splitting and depends on
the parameters K1 and K2. It has been shown, by using
path-integral formalism [11], that the complete informa-
tion of the effect of the heat bath on tunneling system
is contained in the spectral density which is independent
of the explicit form of the coupling strength. This con-
cept is based on a fact that the bath degrees of freedom
can be integrated out as Gaussian integrals with the dis-
placed centres of phonon states. Later it was pointed out
that the interaction between the bath and the tunneling
system not only induces displacement, but also leads to
deformation of phonon states because of the nonlinear in-
teraction [18,19].

Using creation and annihilation operators the
Hamiltonian (2) is expressed as

H = −Γ0

2
σx +

∑

k

ωkb
+
k bk +

∑

k

gkσz

(
b+k + bk

)
, (3)

where gk = Ck (2mkωk)1/2 are effective coupling strength.
In order to obtain the corresponding tunnel splitting in the
dissipative environment the two lowest-energy eigenstates
of the system-plus-environment may be assumed as

|ψ〉± =
1√
2

(|ψ+〉|φ+〉 ± |ψ−〉|φ−〉) (4)

which satisfy
H |ψ±〉 = E±|ψ±〉, (5)

where σz |ψ±〉 = ±|ψ±〉 and |φ±〉 are the displaced
phonon ground states, namely, the coherent states with

bk|φ±〉 = ±ηk |φ±〉, which are to be determined in terms
of variational method. Inserting equations (3) and (4) into
equation (5) and noting σx|ψ±〉 = |ψ∓〉 and 〈ψi|ψj〉 =
δij(i, j = +, −) we obtain

E± =
∑

k

(
ωk|ηk|2 + 2gk Re ηk

) ∓ Γ0

2
〈φ+|φ−〉. (6)

The corresponding tunnel splitting is given by the
expression

Γ = E− − E+ = Γ0〈φ+|φ−〉. (7)

It is obvious that the effect of the heat-bath environ-
ment on tunnel splitting depends on the overlap 〈φ+|φ−〉.
When the coupling between the tunneling system and
the heat-bath environment and the interaction among
phonons can be ignored, the Hamiltonian (3) reduces to
H0 = −Γ0

2 σx+
∑

k ωkb
+
k bk. The ground state ofH0 may be

written as |0〉|ψe〉, where |ψe〉 = (|ψ+〉+ |ψ−〉)/
√

2 denotes
the ground state of the two-level system and |0〉 =

∏
k |0〉k

is the ground state of phonon bath. For the weak cou-
pling, the interaction between the tunneling system and
the heat bath induces the displacement of phonon state
which is dominating effect [18]. Thus the trial displaced
ground state of the Hamiltonian equation (3) is written as

|ψ〉 =
∏

k

exp
[−ckσz(b+k − bk)

] |0〉k|ψe〉

=
1√
2

(|ψ+〉|φ+〉 + |ψ−〉|φ−〉) , (8)

where |φ±〉 =
∏

k exp
[∓ck

(
b+k − bk

)] |0〉k are the phonon
coherent states which we are looking for. ck is the
variational parameter determined from the equation
δE/δck = 0 which minimizes the energy E = 〈ψ|H |ψ〉 and
is given by ck = gk/(ωk+Γ0K). The overlap between |φ+〉
and |φ−〉 is obtained [19] as

K = 〈φ−|φ+〉 = exp
∑

k

(−2c2k
)
. (9)

By means of the simple power law for coupling strength
gk = g0 (ωk/ωD)λ with ωD the upper cut-off frequency
and replacing the sum over wave vector k by integral
such that

∑
k ∼ ∫

ωn−1dω (n is the dimension of phonon
bath), we have

∑
k 2c2k = α

∫ ωD

0 dωJ(ω)/(ω+Γ0K)2 with
J(ω) = ωs/ωs−1

D (s = 2λ+ n− 1) and α = 2g2
0/ω

2
D the di-

mensionless coupling strength. Thus for ohmic dissipation
(s = 1) we obtain

Γ = Γ0K = f(Γ ), f(Γ ) = Γ0

(
Γ

ωD + Γ
exp

ωD

ωD + Γ

)α

.

(10)
It is seen that equation (10) has nonzero solution for Γ
when df(Γ )

dΓ > 1, while only the trivial solution, Γ = 0,
when df(Γ )

dΓ < 1. A critical value αc is determined from
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Fig. 1. The critical value αc and αs
c as a function of the ra-

tio Γ0
ωD

.

the equation df(Γ )
dΓ = 1 along with equation (10) and is

found to satisfy the equation

(
√
αc − 1)1−αc =

Γ0

ωD
α−αc/2

c e
√

αc (11)

with αc depending on Γ0
ωD

. Figure 1a shows αc as a func-
tion of the ratio Γ0

ωD
and indicates that Γ �= 0 in the region

Fig. 2. The dimensionless tunnel splitting Γ
ωD

and Γs
ωD

as a

function of the dimensionless coupling strength α for Γ0
ωD

= 0.4.

below the critical curve and Γ = 0 in the region above the
critical curve. When Γ0

ωD
� 1, equation (11) gives criti-

cal value αc = 1, while equation (10) is approximated as

Γ = Γ0

(
e Γo

ωD

) α
1−α

for α < 1 and Γ = 0 for α > 1, which
is just the results in references [11,20] where the cut off
frequency ωD is usually considered to be very large and all
results referred to are in the lowest order of Γ0

ωD
. The crit-

ical value αc = 1 also is given by reference [9] where the
finite temperature case is considered. The dimensionless
tunnel splitting Γ

ωD
with dissipation is plotted in Figure 2

(solid line) as a function of α with scale Γ0
ωD

= 0.4. Γ
ωD

decreases with increasing α. When α � αc, tunnel split-
ting vanishes and thus the coherent transition between
two degenerate states |ψ±〉 are completely suppressed.

For the strong coupling case, the displaced state ap-
proximation is no longer valid. In fact, the tunneling sys-
tem not only induces the displacement of the oscillators
in environment, but also leads to the deformation of the
ground state of phonon bath because of the interaction
among phonons. This deformation effect may be described
by the squeezed state of phonon vacuum and thus varia-
tional state is assumed as

|ψs〉 =
∏

k

exp
[
−σz

gk

ωk

(
b+k − bk

)]

× exp
[−rk

(
b2k − b+2

k

)] |0〉k|ψe〉

=
1√
2

(|ψ+〉|φs+〉 + |ψ−〉φs−〉) , (12)

where |φs±〉 =
∏

k exp[∓ gk

ωk
(b+k − bk)] exp[−rk(b2k

− b+2
k )]|0〉k is the displaced-squeezed coherent state of the

phonon bath and rk is variational parameter. Using varia-
tional method we obtain rk = 1

8 ln(1 + 4g2
kΓ0Ks/ω

3). The
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overlapping integral between |φs+〉 and |φs−〉 satisfies the
equation

Ks = 〈φs−|φs+〉 = exp

[
−

∑

k

2g2
k

ω2
k

exp (−2rk)

]
. (13)

The effective tunnel splitting in this case is denoted as
Γs = Γ0Ks. With the same procedure we obtain

Γs = Γ0

( √
2αΓs/ωD

1 +
√

1 + 2αΓs/ωD

)α/2

(14)

for ohmic dissipation. In Figure 2 (dashed line) Γs

ωD
as a

function of α is shown for scale Γ0
ωD

= 0.4. Γs

ωD
decreases

with increasing α and vanishes when α � αs
c. The critical

value αs
c is determined by the equation

32
Γ0

ωD
αs

c(α
s
c − 4)αs

c/4−1 = (αs
c + 4)αs

c/4+1. (15)

The critical values αs
c as a function of the ratio Γ0

ωD
is

plotted in Figure 1b. Including the nonlinear interaction
among phonons which is described by squeezed coherent
states the coherent tunneling seems to be expanded to a
more wide region of value α. In both cases the tunnel split-
ting and therefore the macroscopic quantum coherence are
suppressed by ohmic dissipation of the environment.

It is interesting to investigate the relation of decoher-
ence to the entanglement between the giant spin and the
environment. To this end we begin with the reduced den-
sity operator by performing the trace over Fock-space of
phonons

ρp(ψ) =
∑

n

〈n|ψ〉〈ψ|n〉

=
1
2

(|ψ+〉〈ψ+| + |ψ−〉〈ψ−|
+K|ψ+〉〈ψ−| +K|ψ−〉〈ψ+|) (16)

where |n〉 =
∏

k |nk〉 is the Fock-state of phonons. The
reduced density operator has an obvious physical mean-
ing that the quantum coherence between the degenerate
states |ψ±〉 is suppressed by the same suppressing fac-
tor K as the one appearing in tunnel splitting. Particu-
larly when K = 0 the pure macroscopic quantum state
1√
2
(|ψ+〉 + |ψ−〉) reduces to a mixed state showing the

complete decoherence. Using the von Nenmann entropy
to measure the degree of entanglement between the giant
spin and the environment, the degree of entanglement may
be defined as [21]

E(ψ) = S [ρp(ψ)] = −
m∑

i=1

λi log2 λi, (17)

where m is Schmidt number and {λi} are nonzero eigen-
values of ρp. The degree of entanglement corresponding to
the entangled state |ψ〉 is

E(ψ) = 1 − 1
2
log2

[
(1 +K)K+1 (1 −K)K−1

]
. (18)

Fig. 3. Dependence of the entanglement degree on the dimen-
sionless coupling strength α for Γ0

ωD
= 0.4.

When K = 1, the degree of entanglement is zero, while
for K = 0, we have the maximum entanglement E(ψ) = 1.
The entanglement depends on the dimensionless coupling
strength α via K. The relation between K and α is
found as

K =
[

Γ0K

ωD + Γ0K
exp

(
ωD

ωD + Γ0K

)]α

(19)

for the state |ψ〉 in equation (8). For the case of considering
the interaction among phonons the relation is replaced by

Ks =
( √

2αΓ0Ks√
ωD +

√
ωD + 2αΓ0Ks

)α
2

. (20)

The dependence of the entanglement on the dimension-
less coupling strength is shown in Figure 3 for Γ0

ωD
= 0.4.

It is obvious that the decoherence occurs when the en-
tanglement attains its maximum. From Figure 3 one can
find that the degree of entanglement for the squeezed co-
herent state of phonons vacuum, E(ψs), approaches its
maximum value more slowly than E(ψ) indicating a fact
that interphonon interaction decreases the entanglement
between the spin system and the environment and sup-
presses the decoherence (see Figs. 1 and 2), which is in
favor of quantum computing.

In conclusion, the dissipation of environment consist-
ing of phonon bath results in the suppression of tunnel
splitting and therefore the decoherence in the magnetic
grain. When the coupling strength is higher than its criti-
cal value, tunnel splitting is completely suppressed. In the
case of considering the interaction between tunneling sys-
tem and the environment, the interphonon interaction re-
sults in an effective decoupling of the spin system from the
phonon bath and therefore decreases the decoherence and
entanglement. When the effect of environment consisting
of phonon bath is considered the molecular magnet (for
instance Fe8) is still a good candidate for the realization
of qubits because Γ0 may be far less than ωD.
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